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A Hypersonic Vehicle Model Developed With Piston Theory

Michael W. Oppenheimer ∗

David B. Doman †

Air Force Research Laboratory, WPAFB, OH 45433-7531

I. Abstract

For high Mach number flows, M ≥ 4, piston theory has been used to calculate the pressures on the
surfaces of a vehicle. In a two-dimensional inviscid flow, a perpendicular column of fluid stays intact as it
passes over a solid surface. Thus, the pressure at the surface can be calculated assuming the surface were a
piston moving into a column of fluid. In this work, first-order piston theory is used to calculate the forces,
moments, and stability derivatives for longitudinal motion of a hypersonic vehicle. Piston theory predicts a
relationship between the local pressure on a surface and the normal component of fluid velocity produced
by the surface’s motion. The advantage of piston theory over other techniques, such as Prandtl-Meyer flow,
oblique shock, or Newtonian impact theory, is that unsteady aerodynamic effects can be included in the
model. The unsteady effects, considered in this work, include perturbations in the linear velocities and
angular rates, due to rigid body motion. This provides a more accurate model that agrees more closely with
models derived using computational fluid dynamics or those derived by solving Euler equations. Additionally,
piston theory yields an analytical model for the longitudinal motion of the vehicle, thus allowing design trade
studies to be performed while still providing insight into the physics of the problem.

II. Introduction

In the 1980’s, the National Aerospace Plane (NASP) program commenced, with its goal being a feasibility
study for a single-stage to orbit (SSTO) vehicle, which was reusable and could take off and land horizontally.
The NASP was to be powered by a supersonic combustion ramjet (scramjet) engine. Although this program
was cancelled in the 1990’s, a great deal of knowledge was gained and it spawned future programs, including
the hypersonic systems technology program (HySTP), initiated in late 1994, and the NASA X-43A. The
HySTP program’s goal was to transfer the accomplishments of the NASP program to a technology demon-
stration program. This program was cancelled in early 1995. The NASA X-43A set new world speed records
in 2004, reaching Mach 6.8 and Mach 9.6 on two separate occasions with a scramjet engine. These flights
were the culmination of NASA’s Hyper-X program, with the objective being to explore alternatives to rocket
power for space access vehicles.

With renewed interest in space operations worldwide, there is a renewed interest in hypersonic aerody-
namics research. The scramjet engine will likely play a major role in future hypersonic vehicles. Ulinke a
conventional turbojet engine, a scramjet engine does not use high speed turbomachinery to compress the air
before it reaches the combustor. Instead, it relies upon the rise in pressure across oblique shock waves located
in front of the inlet. Furthermore, the flow through the entire engine is supersonic in contract to a ramjet
where the flow speeds are subsonic through the combustor. On configurations like the NASP and X-43A,
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the underside of the airframe must function as the air inlet mechanism and the exhaust nozzle. Therefore,
integration of the airframe and engine are critical to success of a scramjet powered vehicle.

Scramjets could be used as part of a multi-stage launch vehicle that would include multiple propulsion
systems to perform a mission. The factor driving research towards scramjets and away from rockets is cost;
scramjets would substantially lower costs because it is an airbreathing engine. Airbreathing engines don’t
require oxidizer to be carried by the vehicle, hence increasing the payload and reducing the quantity of fuel
carried.

Unsteady aerodynamics is another key technology in the development and optimization of future hyper-
sonic vehicles. The combined effects of a slender flexible vehicle travelling at high speeds and subjected to
large forces may lead to significant unsteady aerodynamic effects. Hence, understanding the concepts and
consequences of time-dependent aerodynamic flows is critical to the success of this type of vehicle.

Piston theory is a technique which has been used for years to determine the pressure distributions on
an airfoil/vehicle, when the Mach number is sufficiently high. Lighthill1 discussed the application of piston
theory on oscillating airfoils some 50 years ago. Ashley and Zartarian2 discuss piston theory while providing
a number of examples of the application of piston theory to specific problems. More recently, Tarpley3

discussed the computation of stability derivatives for a caret-wing waverider using piston theory. Estimation
of stability derivatives also requires the analysis of unsteady flow over the vehicle.3 Piston theory allows the
inclusion of unsteady aerodynamic effects in the model and a closed form solution can be found for these
unsteady effects.

In this work, piston theory is applied to a hypothetical 2-dimensional hypersonic vehicle powered with
a scramjet. Section III describes the vehicle analyzed in this work, while the steady forces on the vehicle’s
surfaces are calculated in Section IV. The afterbody effects are included in Section V, where the pressure
distribution and force due to exhaust plume are evaluated. The control surface, which is a single elevator,
is examined in Section VI, analysis of the flow regions is performed in Section VII, total body forces and
moments are derived in Section VIII, while stability derivatives are calculated in Section IX. The engine
model is developed in Section X and some results from an open-loop simulation are provided in Section XI.

III. HSV Model

Figure 1 shows the hypersonic vehicle considered in this work.4 The vehicle consists of 4 surfaces: an
upper surface (surfaces defined by points cf) and three lower surfaces (surfaces defined by points cd, gh, and
ef). All pertinent lengths and dimensions are in units of feet and degrees, respectively. The total length of
the vehicle is L = 100ft and the notation for lengths is Lf = length of the forebody, Le = length of the
engine nacelle, La = length of the aftbody, Le is the length of the elevator, x̄f is the distance from the C.G.
to the front of the vehicle, x̄a is the distance from the C.G. to the rear of the vehicle, xcs and zcs are the
distances from the C.G. to the midpoint of the elevator in the x and z directions, respectively, and hi is the
engine height. The vehicle lengths are

L = 100 ft

Lf = 47 ft

La = 33 ft

Ln = 20 ft

Le = 17 ft

x̄f = 55 ft

x̄a = 45 ft

xcs = 30 ft

zcs = 3.5 ft

hi = 3.5 ft

(1)
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Figure 1. Hypersonic Vehicle.
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The vehicle angles are
τ1,U = 3◦

τ1,L = 6◦

τ2 = 14.41◦
(2)

Additionally, the vehicle mass and moment of inertia are

Mass = 300 slug

Jyy = 500, 000 slug − ft2
(3)

and the mean aerodynamic chord (c̄) and planform area (S) are defined as

c̄ = L

S = L2
(4)

The goal is to apply piston theory to this vehicle to determine the pressure distribution on the surfaces
of the vehicle, which, in turn, can be used to evaluate the forces and moments. The pressure on the face of
a piston moving into a column of perfect gas is2

P

P∞
=
(

1 +
γ − 1

2
Vn

a∞

) 2γ
γ−1

(5)

where the subscript ”∞” refers to the steady flow conditions past the surface, Vn is the velocity of the surface
normal to the steady flow, a∞ is the freestream speed of sound, and P is the surface pressure. Taking the
binomial expansion of Eq. 5 produces

P

P∞
= 1 +

2γ

γ − 1
γ − 1

2
Vn

a∞
= 1 +

γVn

a∞
(6)

Multiplying through by P∞ and using the perfect gas law (P = ρRT ) and the definition of the speed of
sound (a2 = γRT ) yields the basic result from first-order linear piston theory

P = P∞ + ρ∞a∞Vn (7)

The infinitesimal force due to the pressure is

dF = −PdAn (8)

where dA is a surface element and n is the outward pointing normal. Substituting Eq. 7 into Eq. 8 yields

dF = (−P∞ − ρ∞a∞Vn) dAn (9)

The normal velocity can be computed by taking the dot product of the flow velocity over a surface and the
outward pointing normal for that surface. Hence, Eq. 9 becomes

dF = (−P∞ − ρ∞a∞ [V · n]) dAn (10)

Equation 10 is the basic result upon which this work is based. From this equation, it is seen that in order
to compute the forces acting on a surface, one must determine the properties of the flow past the surface
(properties behind a shock, expansion fan, or freestream), the velocity of the surface relative to the airstream,
V, the outward pointing surface normal, n, and the surface element, dA. The work that follows will develop
these necessary quantities for the upper surface and the lower surfaces defined by points (cd) and (gh).
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IV. Vehicle Surface Pressure Distributions and Forces

To compute the forces, moments, and stability derivatives, consider small perturbations, from a steady
flight condition at M∞, in the velocities u and w and the rate q. On the upper surface, the surface is
modelled as a piston moving into a column of fluid that has the properties of the flow behind an oblique
shock wave (an oblique shock forms if α < τ1,U ). Likewise, on the lower surface, the surface is modelled as a
piston moving into a column of fluid that has the properties of the fluid behind the oblique shock. Figure 2
shows the regions of interest.

To begin the development, first consider the upper surface. The velocity of a point on the upper surface
due to the velocity and rate perturbations is

Vcf = (V1 cos τ1,U + u) î + (V1 sin τ1,U + w) k̂ + ω × rcf (11)

where î, k̂ are unit vectors in the x and z body axes, respectively, ω is the angular rate vector, α is the angle
of attack, and V1 is the velocity of the flow behind the oblique shock wave (see region 1 in Fig. 2). For
longitudinal motion only, ω = qĵ where ĵ is a unit vector in the y body axis direction. In Eq. 11, ru is the
position vector of a point on the upper surface given by

rcf = rcfx î + +rcfz k̂ = xî + tan τ1,U (x − x̄f ) k̂

−x̄a ≤ x ≤ x̄f

(12)

According to Eq. 8, a normal vector to the upper surface is also needed. The upper surface outward pointing
normal vector is

ncf = sin τ1,U î − cos τ1,U k̂ (13)

For the lower surface defined by the points c and d in Figure 1, we use the velocity of the flow after the
oblique shock to obtain

Vcd = (V2 cos τ1,L + u) î + (−V2 sin τ1,L + w) k̂ + ω × rcd (14)
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while for the surface defined by points g and h

Vgh = (V3 + u) î + wk̂ + ω × rgh (15)

where rcd and rgh are position vectors of a point on the lower surface given by

rcd = rcdx î + rcdz k̂ = xî − tan τ1,L (x − x̄f ) k̂

x̄f − Lf ≤ x ≤ x̄f

(16)

rgh = rghx î + rghz k̂ = xî + (Lf tan τ1,L + hi) k̂

(x̄f − Lf ) − Ln ≤ x ≤ x̄f − Lf

(17)

The normal vectors for the lower surfaces are

ncd = sin τ1,Lî + cos τ1,Lk̂

ngh = 1k̂
(18)

Performing the cross products required by Eqs. 11, 14, and 15 gives

ω × rcf = q tan τ1,U (x − x̄f ) î − qxk̂ (19)

ω × rcd = −q tan τ1,L (x − x̄f ) î − qxk̂ (20)

ω × rgh = q (Lf tan τ1,L + hi) î − qxk̂ (21)

According to Eq. 10, the pressures on the surfaces of interest are

Pcf = P1 + ρ1a1 (Vcf · ncf)
Pcd = P2 + ρ2a2 (Vcd · ncd)
Pgh = P3 + ρ3a3 (Vgh · ngh)

(22)

Substituting the results of Eq. 22 into Eq. 8 gives

dFcf = {−P1 − ρ1a1 (Vcf · ncf )} dAcfncf

dFcd = {−P2 − ρ2a2 (Vcd · ncd)} dAcdncd

dFgh = {−P3 − ρ3a3 (Vgh · ngh)} dAghngh

(23)

Using Eqs. 11, 14, and 15 and the appropriate normal vectors (Eqs. 13 and 18), the dot products in Eq. 23
become

Vcf · ncf = [u + q tan τ1,U (x − x̄f )] sin τ1,U − [w − qx] cos τ1,U

Vcd · ncd = [u − q tan τ1,L (x − x̄f )] sin τ1,L + [w − qx] cos τ1,L

Vgh · ngh = w − qx

(24)

Note that the steady terms cancel as a result of taking the dot product. Using Eq. 24 in Eq. 23 yields

dFcf = (−P1 − ρ1a1 {[u + q tan τ1,U (x − x̄f )] sin τ1,U − [w − qx] cos τ1,U}) dAcfncf

dFcd = (−P2 − ρ2a2 {[u − q tan τ1,L (x − x̄f )] sin τ1,L + [w − qx] cos τ1,L}) dAcdncd

dFgh = (−P3 − ρ3a3 {w − qx}) dAghngh

(25)

The next step is to determine the upper and lower surface elements. Note that the vehicle model is 2-
dimensional with unit depth into the page. Hence, the upper surface element, dAu can be written as

dAcf = dLcf (1) (26)

where dLcf defines a length of interest on the upper surface and the multiplying factor of 1 is due to the
vehicle’s unit depth. The surface element can be written as

dAcf =
√

dx2 + dz2(1) (27)
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From Eq. 12,
z = tan τ1,U (x − x̄f ) ⇒ dz = tan τ1,Udx (28)

Using Eq. 28 in Eq. 27 yields

dAcf =
√

dx2 + tan2 τ1,Udx2(1) = dx
√

1 + tan2 τ1,U (1) = dx sec τ1,U (1) = sec τ1,Udx (29)

Similarly, the surface elements for the lower surfaces become

dAcd = sec τ1,Ldx (30)

dAgh = dx (31)
Now, the incremental force on the upper surface (see first entry in Eq. 25) becomes

dFcf = (−P1 − ρ1a1 {[u + q tan τ1,U (x − x̄f )] sin τ1,U − [w − qx] cos τ1,U})ncf sec τ1,Udx (32)

Using similar analysis, the incremental forces on the lower surfaces become

dFcd = (−P2 − ρ2a2 {[u − q tan τ1,L (x − x̄f )] sin τ1,L + [w − qx] cos τ1,L})ncd sec τ1,Ldx (33)

dFgh = (−P3 − ρ3a3 {w − qx})nghdx (34)
It will be useful to separate the steady forces from the unsteady forces at this point. In Section IX, we

will model the unsteady effects using a stability derivative approach. To compute the steady forces, the
components of the incremental forces related to the steady flow are integrated over the surface of the vehicle.
For the upper surface, this becomes

Fcf =
∫ x̄f

−x̄a

(dFcf )steady =
∫ x̄f

−x̄a

−P1

[
sin τ1,U î − cos τ1,U k̂

]
sec τ1,Udx (35)

while, for the lower surfaces, the forces are

Fcd =
∫ x̄f

x̄f−Lf

(dFcd)steady =
∫ x̄f

x̄f−Lf

−P2

[
sin τ1,Lî + cos τ1,Lk̂

]
sec τ1,Ldx (36)

Fgh =
∫ x̄f−Lf

(x̄f−Lf )−Ln

(dFgh)steady =
∫ x̄f−Lf

(x̄f−Lf )−Ln

−P3k̂dx (37)

For the consideration of aeroelastic effects in future work, it will prove useful to split the upper surface force
into forebody and afterbody components. Thus, Eq. 35 becomes

Fcf =
∫ 0

−x̄a

−P1

[
sin τ1,U î − cos τ1,U k̂

]
sec τ1,Udx +

∫ x̄f

0

−P1

[
sin τ1,U î − cos τ1,U k̂

]
sec τ1,Udx

= Fcfa + Fcff

(38)

Performing the integrations yields

Fcfa = −P1x̄a sec τ1,U

[
sin τ1,U î − cos τ1,U k̂

]
= Xcfa î + Zcfa k̂

Fcff
= −P1x̄f sec τ1,U

[
sin τ1,U î − cos τ1,U k̂

]
= Xcff

î + Zcff
k̂

(39)

where Xcfa , Zcfa are the components of the aftbody upper surface force in the x and z directions, respectively,
and Xcff

, Zcff
are the components of the forebody upper surface force in the x and z directions. For the

lower surfaces, integration of Eqs. 36 and 37 produce

Fcd = −P2Lf sec τ1,L

[
sin τ1,Lî + cos τ1,Lk̂

]
= Xcdî + Zcdk̂

Fgh = −P3Lnk̂ = Xghî + Zghk̂
(40)

where X∗ and Z∗ are the components of the lower surface forces. Equations 39 and 40 give the rigid body
steady forces on this vehicle due to pressure distributions on the upper and lower surfaces (cd and gh). It
must still be determined where these forces act on the surfaces. To do this, note that the steady pressures
on the surfaces are simply the pressure behind the shock wave or expansion fan or the freestream pressure,
depending on the angle of attack of the vehicle.
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V. Afterbody

The flow on the afterbody of the vehicle is bounded by the vehicle surface (surface ef in Fig. 1) and a
shear layer between the freestream atmosphere and the exhaust gas of the engine. Hence, external nozzle
analysis must be performed to determine the pressures on surface ef. According to Chavez,5 the pressure
distribution along the nozzle surface can be approximated by

Pef (s) ≈ Pe

1 + s
La

cos(τ1,U +τ2)

(
Pe

P∞
− 1
) (41)

where Pef is the pressure on the afterbody, Pe is the pressure at the engine exit, P∞ is the freestream
pressure, and s is the distance from the lower apex (point e) to the point of interest along the vehicle’s
afterbody surface (see Fig. 1). The force produced by the external nozzle can be calculated by integrating
Eq. 41 over the rear ramp of the vehicle:

Fef =
∫ La

cos(τ1,U +τ2)
0

Pe

1 + s
La

cos(τ1,U +τ2)

(
Pe

P∞
− 1
)ds (42)

Performing the integration and simplifying yields

Fef =
LaPeP∞

cos (τ1,U + τ2) (Pe − P∞)
ln

Pe

P∞
(43)

Equation 43 provides the magnitude of the force due to the external nozzle. Its direction is perpendicular
to the rear ramp. Hence, the vector force due to the external nozzle is

Fef =
LaPeP∞

cos (τ1,U + τ2) (Pe − P∞)
ln

Pe

P∞

[
sin (τ1,U + τ2) î − cos (τ1,U + τ2) k̂

]
= Xef î + Zef k̂ (44)

where Xef and Zef are the axial and normal force components of the external nozzle force.
For use in calculating stability derivatives, it is necessary to determine the force on the rear ramp due to

perturbations in the velocities u and w and the rate q. The differential force on the rear ramp is

dFef = (−Pef − ρefaef [Vef · nef ]) dAefnef (45)

where Pef is the afterbody pressure distribution given by Eq. 41, ρef , aef are the density and speed of sound
on the rear ramp, Vef is the flow velocity on lower surface ef, nef is the normal vector to lower surface ef,
and dAef is the surface element for surface ef. The position vector, normal vector, and surface element for
this surface are given by:

ref = xî + [tan (τ1,U + τ2) (x + x̄a) − L tan τ1,U ] k̂ = xî + refz k̂

−x̄a ≤ x ≤ La − x̄a

(46)

nef = − sin (τ1,U + τ2) î + cos (τ1,U + τ2) k̂ (47)

dAef = sec (τ1,U + τ2) dx (48)

Using Eqs. 46- 48 in Eq. 45 yields

dFef = (−Pef − ρefaef {− (u + qrefz ) sin (τ1,U + τ2) + (w − qx) cos (τ1,U + τ2)})nefdAef (49)

Integration of the steady component of Eq. 49 yields the same result as in Eq. 44. The unsteady components
will be utilized in the computation of stability derivatives.
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VI. Control Surfaces

The control surface is an elevator located near the tail of the vehicle as shown in Fig. 1. The elevator is
modelled as a flat plate hinged at its midpoint so the entire surface deflects. The length of the elevator is
Le = 17ft. Positive δe is defined as trailing edge down. Once again, the velocity of the flow on both sides of
the elevator must be determined. Proceeding in a manner similar to that which has already been done, it is
found that

VeL = (V4 cos δe + u) î + (−V4 sin δe + w) k̂ + ω × re (50)

and
VeU = (V5 cos δe + u) î + (−V5 sin δe + w) k̂ + ω × re (51)

where VeL is the flow velocity on the underside of the elevator, VeU is the flow velocity on the upper surface
of the elevator, ω = qĵ, re is a position vector from the vehicle c.g. to an arbitrary point on the elevator,
V4, V5 are fluid velocities (freestream, behind oblique shock, or behind expansion fan).

The position vector is found to be

re = xî − [zcs + tan δe (x + xcs)] k̂
−xcs − Le

2 cos δe ≤ x ≤ −xcs + Le

2 cos δe

(52)

where xcs and zcs are the x and z positions of the midpoint of the elevator referenced to the c.g. As shown
in Fig. 1, xcs = −30ft and zcs = −3.5ft. For this control surface, outward pointing normal vectors for both
the lower and upper surfaces are needed. These normals are computed as

neU = − sin δeî − cos δek̂

neL = sin δe î + cos δek̂
(53)

To evaluate the cross-product in Eq. 51, we use Eq. 52 to obtain

ω × re = −q [zcs + tan δe (x − xcs)] î − qxk̂ (54)

Then, the differential forces on the upper and lower surfaces of the elevator becomes

dFeU = [−P5 − ρ5a5 {VeU � neU }]neU dAe

dFeL = [−P4 − ρ4a4 {VeL � neL}]neLdAe

(55)

where

VeU � neU = − (u − q {zcs + tan δe (x − xcs)}) sin δe − (w − qx) cos δe (56)

VeL � neL = (u − q {zcs + tan δe (x − xcs)}) sin δe + (w − qx) cos δe (57)

and
dAe = sec δedx(1) = sec δedx (58)

Hence, the upper and lower forces on the elevator can be computed as

FeU =
∫ −xcs+

Le
2 cos δe

−xcs−Le
2 cos δe

[−P5 − ρ5a5 {VeU � neU }]
[
− sin δe î − cos δek̂

]
sec δedx (59)

FeL =
∫ −xcs+

Le
2 cos δe

−xcs−Le
2 cos δe

[−P4 − ρ4a4 {VeL � neL}]
[
sin δeî + cos δek̂

]
sec δedx (60)

Eq. 56 would be used in Eq. 59, while Eq. 57 would be used in Eq. 60. The steady forces on the elevator
become

FeU =
∫ −xcs+

Le
2 cos δe

−xcs−Le
2 cos δe

−P5

[
− sin δe î − cos δek̂

]
sec δedx (61)
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FeL =
∫ −xcs+

Le
2 cos δe

−xcs−Le
2 cos δe

−P4

[
sin δeî + cos δek̂

]
sec δedx (62)

Evaluating these integrals yields

FeU = −P5Le

[
− sin δe î − cos δek̂

]
= XeU î + ZeU k̂ (63)

FeL = −P4Le

[
sin δe î + cos δek̂

]
= XeL î + ZeL k̂ (64)

VII. Flow Analysis

In the preceding analysis, the properties of the flow on the upper, lower, and control surfaces has been
left general. In this section, the properties of the flow will be determined. Specifically, the angles of attack
at which shock waves or expansion fans are created will be delineated.

By examination of Fig. 1, the following relationships can be determined:

if α = τ1,U → freestream : V1 = V∞, ρ1 = ρ∞, a1 = a∞
if α > τ1,U → expansionfan

if α < τ1,U → shock(compression)
(65)

The wedge angles associated with the upper surface, for calculation of flow properties behind the shock or
expansion fan, are as follows:

if α > τ1,U → θUexpansion = α − τ1,U

if α < τ1,U → θUshock
= −α + τ1,U

(66)

The above information is used to determine the flow properties for the upper surface, namely, V1, ρ1, and
a1. For lower surface cd, the relationships become

if α = −τ1,L → freestream : V2 = V∞, ρ2 = ρ∞, a2 = a∞
if α > −τ1,L → shock(compression)

if α < −τ1,L → expansionfan

(67)

Lower surface cd wedge angles are as follows:

if α > −τ1,L → θLshock
= α + τ1,L

if α < −τ1,L → θLexpansion = −α − τ1,L

(68)

Physically, for the scramjet engine to work properly, an oblique shock must form on the underside of the
vehicle to increase the pressure at the inlet. This effectively places a lower limit on the angle of attack and
requires that the angle of attack be such that an oblique shock forms on the underside of the vehicle. Hence,
from Eq. 67, the angle of attack must satisfy

α > −τ1,L (69)

In other words, −τ1,L is an absolute lower limit for angle of attack, with the engine on; however, the engine
will cease to function before this lower limit is reached. With this limit in place, a bow shock will form on
the underside of the vehicle. For lower surface gh, it is necessary to calculate the angle at which the shock
exactly impinges on the point g of the engine nacelle. This angle, denoted by τbowshock, is

τbowshock = α + tan−1

(
Lf tan τ1,L + hi

Lf

)
(70)

Let the bow shock angle be denoted by β. If β > τbowshock, then the shock misses the point g and the flow
properties on lower surface gh are computed using the flow properties behind the oblique shock (V2, ρ2, a2)
as the initial conditions. Then, an expansion fan forms at point g. If β ≤ τbowshock, then either the shock is
on the lip (point g) or the shock is inside the engine inlet. In either case, freestream properties are used to
compute V3, ρ3, a3. The following steps are used to determine the flow conditions over surface gh.
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1. Calculate shock angle, β, from surface cd.

2. If β > τbowshock, an expansion fan forms at point g and the flow properties behind the oblique shock
wave are used as input to the expansion fan flow equations with a wedge angle of τ1,L.

3. If β ≤ τbowshock, an expansion fan forms at point g and the freestream flow properties are used as input
to the expansion fan flow equations. The wedge angle in this case is only a function of angle of attack.
If α = 0, then the flow properties in region 3 are freestream, that is, V3 = V∞, ρ3 = ρ∞, and a3 = a∞.
If α > 0, a shock forms at point g with the shock angle computed using a wedge angle of α. If α < 0,
an expansion fan forms on the underside of the engine and flow properties in region 3 are calculated
using a wedge angle of −α.

For the control surface, the flow behind the leading edge of the elevator is determined by the elevator
deflection angle and the angle of attack. More specifically, if δe = −α then both the top and bottom of
the elevator experience the freestream. Therefore, V4 = V5 = V∞, ρ4 = ρ5 = ρ∞, and a4 = a5 = a∞. If
δe > −α, then an expansion fan forms on the top of the elevator, while the bottom of the elevator experiences
compression and a shock forms. In either case, the wedge angle is α + δe. If δe < −α the a shock forms on
top of elevator and an expansion fan is on the bottom of the elevator. In this case, the wedge angle for the
shock and expansion fan is −α − δe.

VIII. Total Forces and Moments

Having determined the forces on each of the surfaces, the moments about the c.g. that each force produces
must be determined. To do this, the location of each force on the vehicle must be computed. Figure 3 shows
the forces acting on the vehicle. Consider first the upper surface with the forebody and aftbody forces given

c

g h

f

xb

zb

1,U

hi

V

d
e

q1,L

2

V

e

FUf

FUa

FeU

FeL

Fa

Flgh

Flcd

mg

Figure 3. Forces Acting on the Hypersonic Vehicle.
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in Eq. 39. The forebody force acts at the point

Fcff
:
( x̄f

2
,− x̄f

2
tan τ1,U

)
(71)

while the upper surface afterbody force acts at

Fcfa :
(
− x̄a

2
,−
(
x̄f +

x̄a

2

)
tan τ1,U

)
(72)

For the lower surfaces,

Fcd :
(

x̄f − Lf

2
,
Lf

2
tan τ1,L

)
(73)

Fgh :
(

x̄f − Lf − Ln

2
, Lf tan τ1,L + hi

)
(74)

The force due to the external nozzle acts at a point given by

Fef :
(
x̄f − Lf − Ln − x̄Fef

cos (τ1,U + τ2) , Lf tan τ1,L − x̄Fef
sin (τ1,U + τ2)

)
(75)

where x̄Fef
is the x point of the center of mass of the pressure distribution on the rear ramp assuming an

axis system centered at point e with x axis pointing along line ef and the z axis pointing up. In other words,
the center of mass of the pressure distribution was computed in a local coordinate frame (local to surface
ef). Then, this distance was referenced to the c.g. of the vehicle. In Eq. 75, x̄Fef

is given by

x̄Fef
=

La

cos (τ1,U + τ2) ln Pe

P∞

[
1 − P∞

Pe − P∞
ln

Pe

P∞

]
(76)

The elevator force acts at
Fe : (−xcs,−zcs) (77)

Equations 39, 40, 44, 63, and 64 give the axial and normal force components of the forces acting on the
vehicle. Now, the moments due to these forces can be calculated. Positive moment is defined as clockwise or
the direction that tends to increase angle of attack, while negative moment is defined as counter-clockwise.
The moment arms are given by Eqs. 71 - 75, 77.

Mcff
= −P1x̄

2
f

2
(
1 − tan2 τ1,U

)
(78)

Mcfa = −P1x̄a tan2 τ1,U

(
x̄f +

x̄a

2

)
+ P1

x̄2
a

2
(79)

Mcd = −P2Lf tan τ1,L

(
Lf tan τ1,L

2

)
+ P2Lf

(
x̄f − Lf

2

)
(80)

Mgh = P3Ln

(
x̄f − Lf − Ln

2

)
(81)

Mef = ±Xef

[
Lf tan τ1,L − x̄Fef

sin (τ1,U + τ2)
]− Zef

[
x̄f − Lf − Ln − x̄Fef

cos (τ1,U + τ2)
]

(82)

where x̄Fef
is given in Eq. 76 and Xef , Zef are expressed in Eq. 44. The sign on the first component of Mef

will depend on the vehicle’s geometry. The rule used to determine the sign is as follows:

+ if Lf tan τ1,L − x̄Fef
sin (τ1,U + τ2) > 0

− if Lf tan τ1,L − x̄Fef
sin (τ1,U + τ2) ≤ 0

(83)

The moments produced by the elevator are

MeU = −P5Le sin δezcs + P5Le cos δexcs (84)
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MeL = P4Le sin δezcs − P4Le cos δexcs (85)

The total aerodynamic forces and moments on the vehicle are

Xtotal = Xcff
+ Xcfa + Xcd + Xgh + Xef + XeL + XeU (86)

Ztotal = Zcff
+ Zcfa + Zcd + Zgh + Zef + ZeL + ZeU (87)

Mtotal = Mcff
+ Mcfa + Mcd + Mgh + Mef + MeL + MeU (88)

IX. Stability Derivatives

The stability derivatives of interest for this vehicle configuration are CZα, Cxα, CMα, CZq, and CMq .
These computations are complex and, in an attempt to simplify them, the following notation will be used
when necessary:

Lef2 = (La−x̄a)2

2 − x̄2
a

2

Lef3 = (La−x̄a)3

3 + x̄3
a

3

Lef4 = (La−x̄a)4

4 − x̄4
a

4

Lef2 = (La−x̄a)5

5 + x̄5
a

5

(89)

A1 = ρeae + (ρe−ρ∞)(ae−a∞)(La−x̄a)2

L2
a

− ae

La
(ρe − ρ∞) (La − x̄a) − ρe

La
(ae − a∞) (La − x̄a)

A2 = ae

La
(ρe − ρ∞) + ρe

La
(ae − a∞) − 2

L2
a

(ρe − ρ∞) (ae − a∞) (La − x̄a)

A3 = (ρe−ρ∞)(ae−a∞)
L2

a

(90)

f1 = tan (τ1,U + τ2)
f2 = L tan τ1,U

f3 = sin (τ1,U + τ2)
f4 = cos (τ1,U + τ2)

(91)

Additionally, the pressure on the rear ramp of the vehicle (surface ef) is given by Eq. 41, which is a function of
the distance moved along the rear ramp. Thus, this pressure distribution is not constant along the surface.
At point e, the pressure is given by the engine exit properties (Pe), while at point f the pressure is the
freestream pressure (P∞). An obvious choice for the temperature distribution on the rear ramp, Tef , is a
form like the corresponding pressure, so that

Tef (s) ≈ Te

1 + s
La

cos(τ1,U +τ2)

(
Te

T∞
− 1
) (92)

Then, the speed of sound and density can be calculated from the definition of speed of sound and the perfect
gas law:

aef =
√

γRTef

ρef = Pef

RTef

(93)

Both aef and ρef factor into the stability derivative calculations. Unfortunately, the expressions in Eq. 93,
when used in the stability derivative calculations do not allow determination of a closed-form solution. In
order to facilitate a closed-form solution, the following approximations for the speed of sound and density
on the rear ramp will be used in the stability derivative calculations:

ρef = (ρ∞−ρe)
−La

(x − {La − x̄a}) + ρe

aef = (a∞−ae)
−La

(x − {La − x̄a}) + ae

(94)

where
−x̄a ≤ x ≤ La − x̄a (95)

These are first-order approximations, which capture the boundary conditions.
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A. α Derivative of Z-Force Coefficient

To compute the change in Z-force component due to a change in angle of attack, the infinitesimal force
expression that contains the vertical velocity perturbation, w, must be integrated. Thus,

(CZ)w =
1

q∞S

∫
(dF)z−w =

1
q∞S

[∫ x̄f

−x̄a

(dFcf )z−w +
∫ x̄f

x̄f−Lf

(dFcd)z−w

]

+
1

q∞S

[∫ x̄f−Lf

x̄f−Lf−Ln

(dFgh)z−w +
∫ La−x̄a

−x̄a

(dFef )z−w

] (96)

where
∫

(dFu)z−w is the differential force, on the upper surface, in the z direction due to w motion. Using
the appropriate differential force elements from Eq. 25 in Eq. 96 produces

(CZ)w =
1

q∞S

[∫ x̄f

−x̄a

−ρ1a1w cos τ1,Udx −
∫ x̄f

x̄f−Lf

ρ2a2w cos τ1,Ldx

]

+
1

q∞S

[∫ x̄f−Lf

x̄f−Lf−Ln

−ρ3a3wdx +
∫ La−x̄a

x̄a

−ρefaefw cos (τ1,U + τ2) dx

] (97)

Performing the integrations yields

(CZ)w = w
1

q∞S
[−ρ1a1 cos τ1,U (x̄f + x̄a) − ρ2a2 cos τ1,LLf − ρ3a3Ln]

−w
cos (τ1,U + τ2)

q∞S
[A1La + A2Lef2 + A3Lef3 ]

(98)

If w
V∞

� 1 then w
V∞

≈ α. Thus, w = V∞α. Therefore,

∂CZ

∂α
=

V∞
q∞S

[−ρ1a1 cos τ1,UL − ρ2a2 cos τ1,LLf − ρ3a3Ln]

−V∞ cos (τ1,U + τ2)
q∞S

[A1La + A2Lef2 + A3Lef3 ]
(99)

B. α Derivative of X-Force Coefficient

The change in X-force due to a change in angle of attack can be calculated using

(CX)w =
1

q∞S

∫
(dF)x−w =

1
q∞S

[∫ x̄f

−x̄a

(dFcf )x−w +
∫ x̄f

x̄f−Lf

(dFcd)x−w

]

+
1

q∞S

[∫ x̄f−Lf

x̄f−Lf−Ln

(dFgh)x−w +
∫ La−x̄a

−x̄a

(dFef )x−w

] (100)

Substituting in the differential forces yields

(CX)w =
1

q∞S

[∫ x̄f

−x̄a

ρ1a1w sin τ1,Udx −
∫ x̄f

x̄f−Lf

ρ2a2w sin τ1,Ldx

]

+
1

q∞S

[∫ x̄f−Lf

x̄f−Lf−Ln

−ρ3a3w0dx +
∫ La−x̄a

−x̄a

ρefaefw sin (τ1,U + τ2) dx

] (101)

Performing the integrations, simplifying, and assuming that w
V∞

� 1 so that w
V∞

≈ α gives

∂CX

∂α
=

1
q∞S

V∞ [ρ1a1 sin τ1,UL − ρ2a2 sin τ1,LLf ] +
V∞ sin (τ1,U + τ2)

q∞S
[A1La + A2Lef2 + A3Lef3 ] (102)
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C. α Derivative of Pitching Moment Coefficient

For CMα, first find the contribution to the pitching moment due to a velocity w:

(CM )w =
1

q∞Sc̄

[∫
z (dF)x−w −

∫
x (dF)z−w

]

=
1

q∞Sc̄
z

[∫ x̄f

−x̄a

(dFcf)x−w +
∫ x̄f

x̄f−Lf

(dFcd)x−w +
∫ x̄f−Lf

x̄f−Lf−Ln

(dFgh)x−w +
∫ La−x̄a

−x̄a

(dFef )x−w

]

− 1
q∞Sc̄

x

[∫ x̄f

−x̄a

(dFcf )z−w +
∫ x̄f

x̄f−Lf

(dFcd)z−w +
∫ x̄f−Lf

x̄f−Lf−Ln

(dFgh)z−w +
∫ La−x̄a

−x̄a

(dFef )z−w

]

(103)

Substituting the appropriate expressions, performing the integrations, simplifying, and assuming that w
V∞ �

1 so that w
V∞

≈ α yields

∂CM

∂α
=

1
q∞Sc̄

1
2
V∞

[−ρ1a1 tan τ1,U sin τ1,UL2 + ρ2a2 tan τ1,L sin τ1,LL2
f

]
+

V∞ sin (τ1,U + τ2)
q∞Sc̄

[f1 (A1Lef2 + A2Lef3 + A3Lef4) + (f1x̄a − f2) (A1La + A2Lef2 + A3Lef3)]

+
1

q∞Sc̄

1
2
V∞

[
ρ1a1 cos τ1,U

(
x̄2

f − x̄2
a

)
+ ρ2a2 cos τ1,LLf (2x̄f − Lf ) − ρ3a3Ln (Ln − 2x̄f + 2Lf)

]
−V∞ cos (τ1,U + τ2)

q∞Sc̄
[A1Lef2 + A2Lef3 + A3Lef4 ]

(104)

D. q Derivative of Z-Force Coefficient

The Z-force coefficient due to a pitching motion is

(CZ)q =
1

q∞S

∫
(dF)z−q =

1
q∞S

[∫ x̄f

−x̄a

(dFcf )z−q +
∫ x̄f

x̄f−Lf

(dFcd)z−q

]

+
1

q∞S

[∫ x̄f−Lf

x̄f−Lf−Ln

(dFgh)z−q +
∫ La−x̄a

−x̄a

(dFef )z−q

] (105)

Performing the integrations and simplifying yields

∂CZ

∂q
=

1
q∞S

ρ1a1
L

2
[cos τ1,U − tan τ1,U sin τ1,UL]

+
1

q∞S
ρ2a2

Lf

2
[cos τ1,L (2x̄f − Lf ) − tan τ1,L sin τ1,LLf ]

+
1

q∞S
ρ3a3

Ln

2
[−Ln + 2x̄f − 2Lf ]

+
1

q∞S

[
L2

a

2
(f1f3A1) − Laf2f3A1 + Lef2f4A1 +

(
2L3

a − 3L2
ax̄a

)
6

f1f3A2 − Lef2f2f3A2

]

+
1

q∞S

[
Lef3f4A2 +

(
Lef4 +

(La − x̄a)3 x̄a

3
+

x̄4
a

3

)
f1f3A3 − Lef3f2f3A3 + Lef4f4

]

(106)
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E. q Derivative of Pitching Moment Coefficient

The pitching moment due to a pitch rate can be calculated using

(CM )q =
1

q∞Sc̄

∫
z (dF)x−q −

∫
x (dF)z−q

=
1

q∞Sc̄
z

[∫ x̄f

−x̄a

(dFcf )x−q +
∫ x̄f

x̄f−Lf

(dFcd)x−q +
∫ x̄f−Lf

x̄f−Lf−Ln

(dFgh)x−q +
∫ La−x̄a

−x̄a

(dFef )x−q

]

− 1
q∞Sc̄

x

[∫ x̄f

−x̄a

(dFcf )z−q +
∫ x̄f

x̄f−Lf

(dFcd)z−q +
∫ x̄f−Lf

x̄f−Lf−Ln

(dFgh)z−q +
∫ La−x̄a

−x̄a

(dFef )z−q

] (107)

Substituting the appropriate expressions yields, performing the integrations, and simplifying produces

∂CM

∂q
= − 1

q∞Sc̄
ρ1a1 tan2 τ1,U

[
tan τ1,U sin τ1,U

L3

3
+

cos τ1,U

6
(−x̄3

f + 2x̄3
a + 3x̄2

ax̄f

)]

− 1
q∞Sc̄

ρ2a2 tan2 τ1,L

[
tan τ1,L sin τ1,L

L3
f

3
− cos τ1,L

Lf

2
(2x̄f − Lf)

]

− f1

q∞Sc̄

[
(A1Lef3 + A2Lef4 + A3Lef5)

(
f2
1 f3 + f1f4

)]
− f1

q∞Sc̄

[
(A1Lef2 + A2Lef3 + A3Lef4)

(
2f2

1f3x̄a − 2f1f2f3 − f2f4

)]
− f1

q∞Sc̄

[
(A1La + A2Lef2 + A3Lef3)

(
f2
1 f3x̄a − 2f1f2f3x̄a + f1f4x̄a + f2

2 f3

)]
− 1

q∞Sc̄
ρ1a1

[
tan τ1,U sin τ1,U

6
(−x̄3

f + 3x̄2
ax̄f + 2x̄3

a

)
+

cos τ1,U

3
(
x̄3

f + x̄3
a

)]

− 1
q∞Sc̄

ρ2a2

[
tan τ1,L sin τ1,L

6
L2

f (2Lf − 3x̄f ) + cos τ1,L
Lf

3
(
3x̄2

f − 3x̄fLf + L2
f

)]

− 1
q∞Sc̄

ρ3a3

[
(x̄f − Lf)3

3
− (x̄f − Lf − Ln)3

3

]

− 1
q∞Sc̄

[(A1Lef3 + A2Lef4 + A3Lef5) (f1f3 + f4) + (A1Lef2 + A2Lef3 + A3Lef4) (f1f3x̄a − f2f3)]

(108)

X. Engine

For hypersonic flight, the propulsion system necessary to produce the required thrust is either a rocket or
a supersonic combustion ramjet (scramjet). The advantage of a scramjet over a rocket is that the scramjet
is an airbreathing propulsion system, thus eliminating the need to carry the oxidizer onboard the vehicle.
This, in turn, allows for increased payload. The scramjet model used in this work is identical to that used by
Chavez and Schmidt.5 Engine inlet conditions are primarily determined by the flow behind the oblique shock.
The scramjet consists of 3 sections; a diffuser, a combustor, and an internal nozzle. The flow through the
diffuser and nozzle is assumed to be isentropic, quasi-one-dimensional, while the flow through the combustor
is assumed to be quasi-one-dimensional in a constant area duct with heat addition. The working fluid in the
engine is assumed to be a perfect gas with constant specific heats. There are two control variables which
affect the engine: diffuser area ratio, ĀD, and temperature addition in the combustor, ΔT0. Figure 4 shows
the engine model.

Inlet conditions to the diffuser, which are inlet conditions to the engine module, are determined from the
flow analysis of the vehicle’s lower forebody and vehicle geometry. The lower forebody flow is turned parallel
to surface cd. To determine the engine inlet conditions, the flow must be turned parallel to the engine,
with the turning angle given by τ1,L. Oblique shock relations are used to determine the engine inlet flow
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Figure 4. Scramjet Engine.
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properties, with the flow properties in region 2 being the input, and Mein , Pein , and Tein being the outputs
of the flow calculations. The engine inlet Mach number, pressure, and temperature are Mein , Pein , and Tein ,
respectively. By turning the flow to be parallel to the engine, a force and hence moment is imparted on the
vehicle. The force is given by

Fxinlet
= γM2

2P2 (1 − cos (τ1,L + α))
Ae
b

AdAn

Fzinlet
= γM2

2 P2 sin (τ1,L + α)
Ae
b

AdAn

(109)

This force acts at point d in Figure 1. Hence, the force acts at

rinlet =
[

x̄f − Lf Lf tan τ1,L

]
(110)

Thus, the moment produced is given by

Minlet = Lf tan τ1,LFxinlet
− (x̄f − Lf) Fzinlet

(111)

Now, the flow must be propagated through each section of the scramjet to determine the engine out-
put properties. For the diffuser, continuity is applied to determine the Mach number at the diffuser
exit/combustor inlet:

[
1 + 1

2 (γ − 1)M2
c

]( γ+1
γ−1 )

M2
c

= Ā2
D

[
1 + 1

2 (γ − 1)M2
ein

]( γ+1
γ−1 )

M2
ein

(112)

where Mc is the Mach number at the combustor inlet and Mein is the Mach number at the engine inlet. The
pressures and temperatures at the combustor inlet are given by

Pc = Pein

[
1 + 1

2 (γ − 1)M2
ein

1 + 1
2 (γ − 1)M2

c

] γ
γ−1

(113)

Tc = Tein

[
1 + 1

2 (γ − 1)M2
ein

1 + 1
2 (γ − 1)M2

c

]
(114)

where Pc and Tc are the pressure and temperature at the combustor inlet, and Pein and Tein are the pressure
and temperature at the engine inlet. For the combustor, the exit Mach number, temperature, and pressure
are calculated using

M3
n

[
1 + 1

2 (γ − 1)M2
n

]
(γM2

n + 1)2
=

M3
c

[
1 + 1

2 (γ − 1)M2
c

]
(γM2

c + 1)2
+

M2
c

(γM2
c + 1)2

T0

Tc
(115)

Pn = Pc
γM2

c + 1
γM2

n + 1
(116)

Tn = Tc

(
γM2

c + 1
γM2

n + 1
Mn

Mc

)2

(117)

where Mn, Pn, and Tn are the Mach number, pressure, and temperature at the inlet to the nozzle, respectively
and T0 is the increase in total temperature across the combustor due to the combustion of fuel. For the
nozzle, the exit properties are

[
1 + 1

2 (γ − 1)M2
e

]( γ+1
γ−1 )

M2
e

= Ā2
N

[
1 + 1

2 (γ − 1)M2
n

]( γ+1
γ−1 )

M2
n

(118)

where Mc is the Mach number at the combustor inlet and M2 is the Mach number in region 2 (engine inlet).
The pressures and temperatures at the combustor inlet are given by

Pe = Pn

[
1 + 1

2 (γ − 1)M2
n

1 + 1
2 (γ − 1)M2

e

] γ
γ−1

(119)
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Te = Tn

[
1 + 1

2 (γ − 1)M2
n

1 + 1
2 (γ − 1)M2

e

]
(120)

where Me, Pe, and Te are the Mach number, pressure, and temperature at the engine exit, respectively, and
ĀN is the internal nozzle ratio defined as the ratio of the nozzle exit area to the nozzle inlet area.

The thrust per unit width of the engine module is given by4

T = ṁo (Ve − V∞) + (pe − p∞)
Ae

b
− (p2 − p∞)

Ae

b

ADAN
(121)

where T is the engine thrust, ṁo is the mass flow through the engine, Ve, pe are the flow velocity and pressure
at the engine exit, V2, p2 are the flow velocity and pressure at the engine inlet, p∞ is the freestream pressure,
Ae/b is the exit area per unit width, AD is the diffuser area ratio, and AN is the nozzle area ratio. The
moment produced by the thrust force is

Mengine =
(

Lf tan τ1,L +
hi

2

)
T (122)

The mass flow through the engine is a function of the shock angle. Essentially, in order to calculate
ṁo, it is necessary to calculate how much mass flow the engine captures. Figure 5 sets up the geometry for
this calculation. It is assumed that the vehicle is operating such that the lower forebody surface see either

c

g h

f

xb

zb

1,U

hi

V

d e

q1,L

2

V

e

Shock

A1

A0

As

Figure 5. Geometry for Mass Flow Capture Area.

the freestream (α = −τ1,L) or a shock forms off the forebody surface. Let the engine inlet capture area be
denoted by A0 and the spill area be denoted by As. Then, if freestream conditions occur, A0 = hi. When a
shock forms, use Figure 5 to compute the capture area, which becomes

A0 = (Lf−2{Lf−(Lf tan τ1,L+hi) cot(βlcd−α)})
cos(βlcd−α) sin βlcd

A1 = (Lf tan τ1,L+hi)
sin θ1

sin (α + θ1)
(123)

where βlcd is the shock angle for lower surface cd and θ1 is defined as

θ1 = tan−1

(
Lf tan τ1,L + hi

Lf

)
(124)
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The mass flow through the engine becomes

ṁo = p∞M∞

√
γ

RT∞
A0 (125)

With the inclusion of the stability derivatives, the engine inlet turning force and moment, and the thrust
and resulting moment, the total aerodynamic forces and moments on the vehicle are

Xtotal = Xcff
+ Xcfa + Xcd + Xgh + Xef + XeL + XeU + q∞S

∂CX

∂α
α + Fxinlet + T (126)

Ztotal = Zcff
+ Zcfa + Zcd + Zgh + Zef + ZeL + ZeU + q∞S

∂CZ

∂α
α + +q∞S

∂CZ

∂q

qc̄

2V∞
+ Fzinlet (127)

Mtotal = Mcff
+Mcfa +Mcd +Mgh +Mef +MeL +MeU + q∞Sc̄

∂CM

∂α
α+ q∞Sc̄

∂CM

∂q

qc̄

2V∞
+Minlet +Mengine (128)

XI. Results

At this point, only initial simulation results are available. Currently, the model has been simulated open-
loop, with a fixed control surface deflection, to ensure that the model is operating correctly. One point of
interest that can be obtained from this simple simulation is the contribution to the forces and moments due
to the inclusion of unsteady effects. Figure 6 shows the steady and unsteady X force, Figure 7 shows the
steady and unsteady Z force, and Figure 8 shows the steady and unsteady pitching moment. Obviously, the
unsteady components will have an impact on the total forces and moments, as these terms are not negligible
compared to the steady terms.

Figure 6. Steady and Unsteady X Forces.
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Figure 7. Steady and Unsteady Z Forces.
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Figure 8. Steady and Unsteady Pitching Moments.
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XII. Conclusions

In this work, piston theory is used to develop a model for the longitudinal dynamics of a hypersonic
vehicle. In particular, velocities of flow normal to the surface of the vehicle are used in a first order piston
theory framework to determine the pressures on the surfaces of the vehicle. The pressures are then integrated
over the body to determine the forces acting on the vehicle. Piston theory is useful here because it allows
the inclusion of the unsteady aerodynamic effects, which are not captured using other techniques.
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